

Estimation of the relationship between FAVAD N1 and ILI values for flexible pipe material water systems using field data in South Africa

7th IWA International Conference on Efficient Use and Management of Water – Paris 2013

Mauro Iriart – MSc. Eng.

Introduction

- FAVAD N1 vs ILI for flexible pipe material water systems in South Africa
- New method to analyze the leakage taking into account the following variables:

Length of Mains (Lm)

Number of Connections (Nc)

Average Zone Pressure (AZP)

Night Day Factor (NDF)

Traditional Power Law

The traditional power law (proposed by John May):

$$\frac{L_a}{L_b} = \left(\frac{P_a}{P_b}\right)^{N1}$$

L: Leakage rate (before/after)

P: Pressure (before/after)

N1: FAVAD N1 value (0.5 - 2.5)

N1 ≈ 0.5 for rigid pipe water systems

N1 ≈ 1.0 for mixed pipe water systems

N1 ≈ 1.5 for flexible pipe water systems

Methods

FAVAD N1 Value

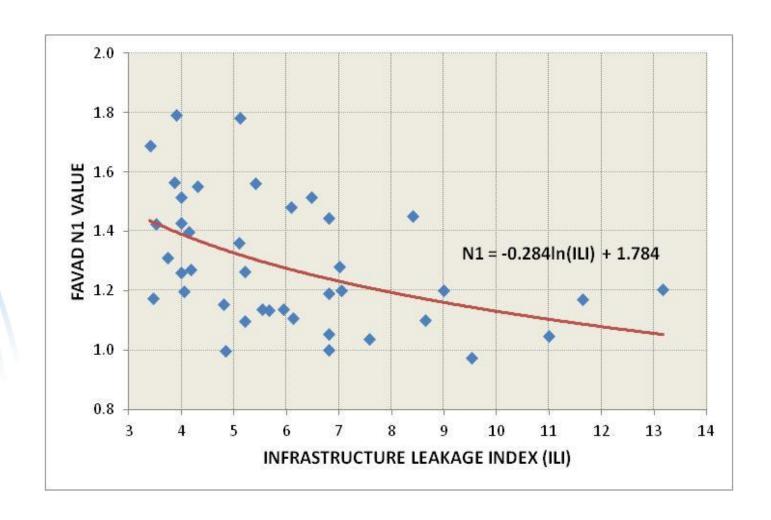
$$N1 = \log_{\left(AZNP_a/_{AZNP_b}\right)} \left[\frac{NL_a}{NL_b}\right]$$

Infrastructure Leakage Index (ILI)

$$ILI = \frac{CARL}{UARL}$$

Pressure Reducing Valves

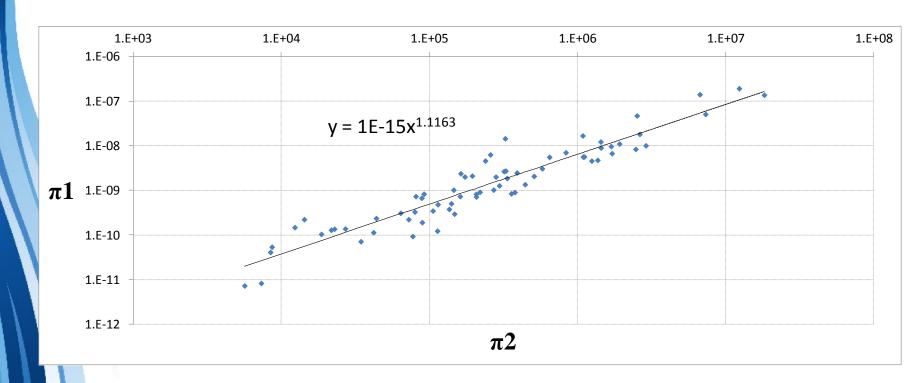
Main Characteristics of the Systems


	-		9	
	-35.	820	30	
S	- 50			
		\sim	D 100	6
	- 1	97	- 6	0.74

Variable	Minimum	Average	Maximum
Nc [conn]	30	324	1866
Lm [km]	0.5	7.6	48.0
Dc [conn/km]	22	55	112
AZP [bar]	3.8-2.6	7.1-4.3	12.1-7.4
NDF [h]	18.5	23.1	26.7
N1	0.97	1.29	1.79
ILI	3.4	6.1	13.2

FAVAD N1 vs ILI

The π theorem is a method for reducing a number of dimensional variables into a smaller number of dimensionless groups, also called π numbers


$$\pi_1 = \frac{L.NDF.Nc}{Lm^3} = \frac{L.NDF.Dc}{Lm^2}$$

$$\pi_2 = \frac{AZP.NDF^2}{\rho.Lm^2}$$

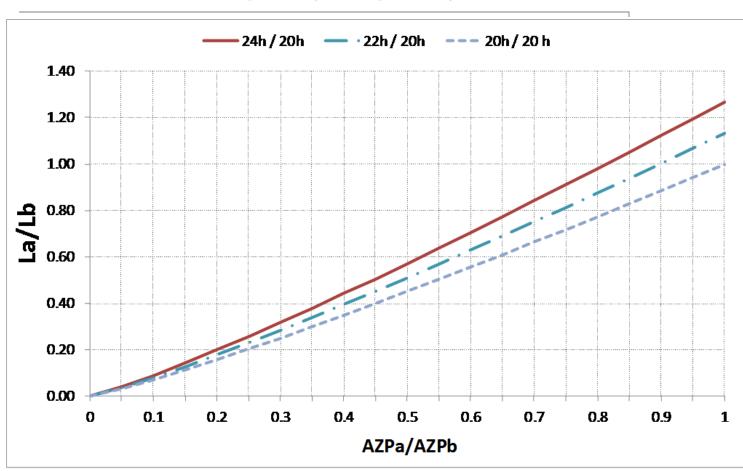
$$\Pi 1 = g (\Pi 2)$$

$$\pi_1 = A. \, \pi_2^{B} \longrightarrow \frac{L.NDF.Nc}{Lm^3} = A. \left(\frac{AZP.NDF}{\rho.Lm^2}\right)^{B}$$

$$A = \frac{\pi_{1,before}}{\pi_{2,before}^{B}} = \frac{\pi_{1,after}}{\pi_{2,after}^{B}} = constant$$

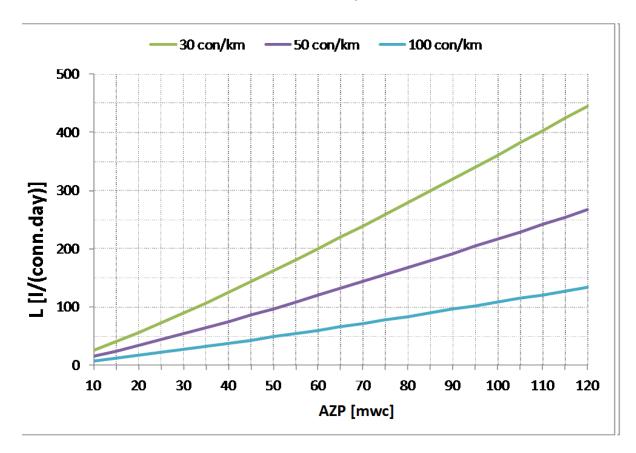
$$A = \frac{\frac{L_{b}.NDF_{b}.N_{b}}{L_{b}}}{\left(\frac{AZP_{b}.NDF_{b}}{e^{b}.l_{b}}\right)^{B}} = \frac{\frac{L_{a}.NDF_{a}.N_{c}a}{l_{b}}}{\left(\frac{AZP_{a}.NDF_{a}}{e^{a}.l_{b}}\right)^{B}}$$

$$La = Lb. \left(\frac{AZPa}{AZPb}\right)^{B}. \left(\frac{NDFa}{NDFb}\right)^{B}$$


$$La = Lb. \left(\frac{AZPa}{AZPb}\right)^{B}.$$
Traditional power law

$$B = FAVAD N1 Value$$

 $B = 1.15$


$$La = Lb \cdot \left(\frac{AZPa}{AZPb}\right)^{B} \cdot \left(\frac{NDFa}{NDFb}\right)^{2B-1}$$

$$L\left[\frac{litres}{conn.day}\right] = A.\frac{Lm}{Dc}.\left(\frac{AZP}{\rho}\right)^{B}.\left(\frac{NDF}{Lm}\right)^{2B-1}$$

Conclusions

- The FAVAD N1 values obtained for the flexible water systems analyzed range from 0.97 up to 1.79, being 1.29 the average value.
- The FAVAD N1 value decreases with an increment of the ILI, and this decrement is more pronounced as ILI becomes lower. The logarithmic trendline obtained from the PMZs analyzed suggests that N1 varies between 1.5 and 1.0; tending to be 1.5 for systems with low ILI (ILI < 4) and 1.0 for systems with high ILI (ILI > 10)

Conclusions

 The leakage can be explained by two dimensionless groups, which are related by a power law

$$\pi_1 = A \cdot \pi_2^B$$
 where A = 7.10-16 and B = N1 = 1.15

 Daily leakage per connection is proportional to AZP and NDF, and inversely proportional to Dc:

$$L\left[\frac{litres}{conn.day}\right] = A.\frac{Lm}{Dc}.\left(\frac{AZP}{\rho}\right)^{B}.\left(\frac{NDF}{Lm}\right)^{2B-1}$$

For PMZ's, leakage reduction after pressure regulation can be estimated with the following formula:

$$La = Lb \cdot \left(\frac{AZPa}{AZPb}\right)^B \cdot \left(\frac{NDFa}{NDFb}\right)^{2B-1}$$

Thanks

Thanks!!

The basic equation for the calculation of UARL is:

UARL (litres/day) = (18 x Lm + 0.8 x Ns + 25 x Lp) x P(2)

Table 2: Components of Unavoidable Annual Real Losses

Components of Unavoidable Annual Real Losses at 50 metres pressure (metric units)						
Infrastructure Component	Unavoidable Background Leakage UBL	Reported Breaks	Unreported Breaks	Unavoidable Annual Real Losses UARL		
Mains	480 litres/km/day	290 litres/km/day	130 litres/km/day	900 litres/km/day	18 litres/km/day/ metre of pressure	
Service Connections, main to curb-stop	30 litres/conn/day	2 litres/conn/day	8 litres/conn/day	40 litres/conn/day	0.80 litres/conn/day/ metre of pressure	
Service Connections, curb- stop to meter	800 litres/km/day	95 litres/km/day	355 litres/km/day	1250 litres/km/day	25 litres/km/day/ metre of pressure	
Typical FAVAD N1	Close to 1.5	0.5 to 2.5, depends on pipe materials and types of leaks		Assumed as average of 1.0 for UARL formula		

Reference: Allan Lambert

Table 3: Relaxation of limits of application of UARL formula, 1999 to 2009

rable of Relaxation of Infine of application of the formata, 1000 to 2000					
Parameter	Limits	Lambert et	Lambert &	Liemberger	Lambert
		al, AQUA	McKenzie	& McKenzie	
		1999	2001	2005	2009
Density of	Minimum	20	20	Removed	No lower limit
Connections/km	Maximum	100	Removed		No upper limit
Average	Minimum	20	25	25	See Graph
Pressures (m)	Maximum				See Graph
System Size	Minimum	Not stated	Nc > 5000	Nc > 3000 C	Nc + 20 x Lm > 3000
		1			

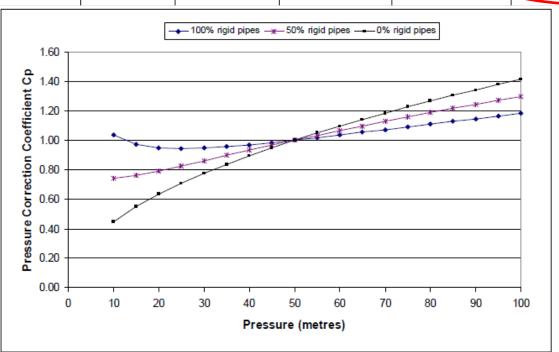


Figure 2: Influence of type of pipe materials on UARL as pressure changes

Reference: Allan Lambert

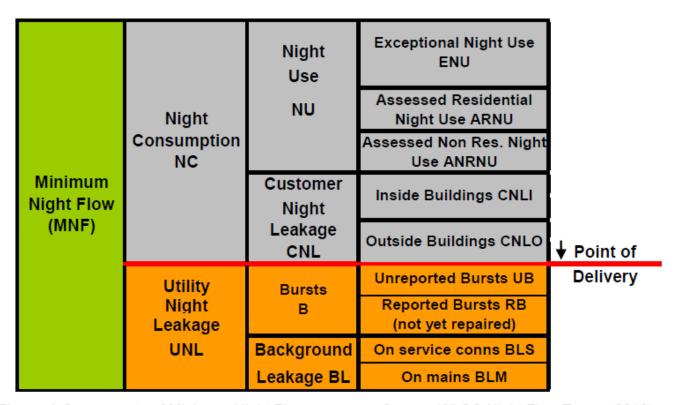


Figure 1 Components of Minimum Night Flow.

Source: WLSG Night Flow Team: (2010)

Reference: Marco Fantozzi

